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SUMMARY

The basic model of Lindhard and Scharff, known as the local plasma model, is
utilized to study the effects on stopping power of the chemical and physical state of
the medium. Unlike previous work with the local plasma model, in which individual
electron shifts in the plasma frequency were estimated empirically, the Pines correc-
tion derived for a degenerate Fermi gas is shown herein to provide a reasonable esti-
mate, even on the atomic scale. Thus, the model is moved to a complete theoretical
base requiring no empirical adjustments, as characteristic of past applications. The
principal remaining error is in the overestimation of the low-energy absorption prop-
erties that are characteristic of the plasma model in the region of the atomic dis-
crete spectrum, although higher-energy phenomena are accurately represented, and even
excitation-to-ionization ratios are given to fair accuracy. Mean excitation energies
for covalent-bonded gases and solids, for ionic gases and crystals, and for metals
are calculated using first-order models of the bonded states, for which reasonable
agreement with the recently evaluated data of Seltzer and Berger is obtained. Hence,
the methods described herein allow reasonable estimates of mean excitation energy for
any physical-chemical combination of material media for stopping-power applications.

INTRODUCTION

The impact of energetic ions with atoms and molecules is a fundamental physical
phenomenon with numerous applications in areas such as astrophysics, medical physics,
high-power lasers, and plasma fusion devices, and is of special interest for radia-
tion protection of people and materials in space. Most of what is known in modern
physics is ultimately related to observations of charged-particle impact phenomena,
by which particle character is studied, starting with the early works of Rutherford
using radioactive sources. To advance our knowledge of such processes is both timely
and technologically important. The historical context in which present theoretical
developments are to be understood is discussed in the following section.

HISTORICAL PERSPECTIVE

It was recognized early in the classical treatment of charged particle slowing
down that the free-electron, long-range Coulomb interaction leads to divergencies in
the energy-loss rate. These divergencies indicate that there is a need for a long-
range saturation effect. The saturation in gases was discussed by Bohr (ref. 1) in
terms of Ehrenfest's principle. Bohr proposed that the saturation in gases is caused
by the bonding of the electrons. To effect energy transfer, the interaction time
T = b/v {(where b 1is the impact parameter and v the ion velocity) must be short
compared with the oscillating period of the bonded electron. (A list of symbols and
abbreviations used in this paper appears after the references.) Hence, the adiabatic
long-range collisions provide the necessary saturation, and an upper limit is estab-
lished for the effective impact parameters. Most of our modern understanding stems



from Bethe's detailed quantum theory (ref. 2) based on the Born approximation.
Stopping power for gaseous media with this approximation is given by
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where 2, is the projectile charge, n is the number of targets per unit volume,
Z2 is the number of electrons per target, m is the electron mass, v 1is the pro-
jectile velocity, B = v/c, ¢ 1is the velocity of light, C 1is the velocity-
dependent shell-correction term (ref. 3), and I, is the mean excitation energy
given by solving

Z InI_=)f 1nE (2)
n

where fn is the electric dipole oscillator strength of the target and E| is the
corresponding excitation energy. The sum in equation (2) includes discrete and
continuum levels. Empirically, it was observed that molecular stopping power is
reasonably approximated by the sum of the corresponding empirically derived "atomic"
stopping powers (ref. 4). Equations (1) and (2) imply

Z1InI=)n2, 1nTI, (3)

where 2 and I pertain to the molecule, Z: and TI: are the corresponding atomic
values, and n; represents the stoichiometric coefficients. This additivity rule,
given by equation (3), is called Bragg's rule.

Sources of deviations from Bragg's additivity rule for molecules and the con-
densed phase are discussed by Platzman (ref. 5). Aside from shifts in excitation
energies and adjustments in line strengths as a result of molecular bonding, new
terms in the stopping power are caused by the coupling of vibrational and rotational
modes, Additionally, in the condensed phase, some discrete transitions are moved
into the continuum, and collective modes among valence electrons in adjacent atoms
produce new terms to be dealt with in the absorption spectrum, Platzman proposed
that the experimentally observed additivity rule may not show that molecular stopping
power is the sum of atomic processes but rather that it demonstrates that molecular
bond shifts for covalent-bonded molecules are relatively independent of the molecular
combination. On the basis of such arguments, Platzman suggested ionic-bonded sub-
stances as the ones which should be studied as a rigid test of the additivity rule
because of the radical difference in bonding type. He further estimated that ionic-
bond shifts could change the stopping power by as much as 50 percent.

Among the early indicators of the violation of the Bragg rule was the calcula-
tion of 15 eV for the mean excitation energy of atomic hydrogen (using eq. (2) with
the exactly known oscillator strengths and excitation levels) compared with a rather
firmly established experimental value for molecular hydrogen of about 18 eV. Since
accurate values of atomic mean excitation energies have been calculated for numerous
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elements by Inokuti and co-workers (refs. 6 to 8) for the purpose of evaluating chem-
ical bonding effects in molecules, empirical values have been substantially perturbed
by effects of the chemical bonds. Although the mean excitation enerqgy for gas mole-

cules could be evaluated in principle from equation (2), the lack of knowledge of the
excitation levels and corresponding oscillator strengths is the main hindrance.

It was suggested by Dalgarno (ref. 9) that the oscillator strength distributions
could be determined empirically from the photoabsorption spectra (aside from experi-
mental uncertainty). Much of these data are obtained by energy-loss experiments by
electron impact scattering at forward angles. Values of mean excitation energy for a
number of simple molecules have in this way been estimated, and have demonstrated the
shift in atomic values caused by chemical bonding (refs. 10 and 11).

Theoretical calculation of mean excitation energies is hindered by the diffi-
culty of solving for the complete excitation spectrum of complex quantum systems.
Dalgarno was able to simplify the calculation by introducing a generalized function,
which is related to the excitation spectrum as follows:

f
SR ()
n n

However, this function can be evaluated without explicitly forming the indicated
sum. Thus, Dalgarno (ref. 12) was able to reduce equation (4) to

z
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where is the ground—state*wave function, Eo is the corresponding energy, w

is an energy eigenvalue, and X is the corresponding eigenvector. Chan and Dalgarno
(ref. 13) calculated I as 42 eV for helium and Kamikawai et al. (ref, 14) calcu-
lated 18.2 eV for molecular hydrogen by the same method. These values are in excel~
lent agreement with experiments.

Simultaneous with the development of the microscopic theory of stopping power
was the macroscopic electrodynamic description of energy loss as required for the
description of the long-range part of the interaction in condensed phase. This is
because the interaction is simultaneous among many constituents. The slowing down is
through the force exerted on the passing particle by the electric field induced in



the medium by the passage (ref, 15). It is customary to assume that the electric
displacement vector is linearly related to the time-varying electric field as

t

> > >
D(t) = E(t) + | g(1) E(t - 1) dt (7)
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for which the dielectric constant is

-]
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The short-range collisions are still treated by Bethe theory with the result for
total stopping power (see ref. 16 for details) of

S = 1n 2my - 82 - g' (9)
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where § 1is a density-effect correction applicable at high energies
(82 > 1/6(0)). Also,
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where Im(Z) denotes the imaginary part of Z. A result of dispersion theory is

w Im(e(w)] = f(w) (1)
27 “ne

where f(w) 1is the dipole oscillator strength per unit cell of the medium, so that

z, In I, ='[ —fﬂﬁl—i 1n(hw) dw (12)
lew) ]

which reduces to the usual Bethe expression (eq. (2)) in a sparse gas for which
e(w) ~ 1,

If the long-range saturation effect is in terms of adiabatic limits for a gas
and in terms of the medium polarization response for condensed dielectrics, the
saturation effect for a free-electron gas is related to the tendency of a neutral
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plasma to screen a local charge imbalance at large distances (ref. 17). The dielec-
tric function of a free-electron gas is derived by Lindhard (ref. 18) and applied to
the stopping-power problem for a classical electron gas and for the interaction-free
Sommerfeld electron gas model. For a free-electron gas at rest, Lindhard arrives at
the equation

anz 2e4p 2
5 = 1 1 mv (13)
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where p is the electron density and wp is the classical plasma frequency given by

2
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Strictly speaking, equation (13) applies only when the electron gas is at rest, but
it also applies in the limit of high projectile velocity compared with the average
motion of the electrons.

A discovery which paralleled the Lindhard investigations was made by Bohm and
Pines (refs. 19 to 21), in which collective long-range interactions in a quantum
electron gas were separated from individual electron motion through a canonical
transformation, after which the normal coordinates of collective oscillation appear.
This separation of the Hamiltonian into collective and individual electron motion is
accomplished because of the effective screening of the Coulomb fields of individual
electrons for distances greater than the screening distance A _. For collective
motion to give a major contribution to the Hamiltonian, the individual electron wave-
length must be greater than A . Bohm and Pines (ref. 21) found the average collec-
tive plasma frequency to be

2
- 3x 3.2 15
<w>-E+2>\s<1+10x>]wp (15)

where A\ is the average electron separation and Y 1is the ratio of the average
electronswavelength to the screening distance. Pines (ref. 22) suggests that the
screening parameter ¥ should be chosen to minimize the electron long-range correla-
tion energy (that is, the electronic Coulomb energy), which, for plane-wave states
appropriate to their degenerate electron gas, is given by

4
0.866y°  0.4581° , 0:019%
- )

E
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(16)

Pines (ref. 22) derived the stopping power in this degenerate electron gas and showed
that the usual classical plasma frequency W is replaced by <w>, which includes
corrections for individual electron motion.



A rather bold suggestion was made by Lindhard and Scharff (ref. 23) that equa-
tion {(13) could be applied on the atomic scale if the appropriate average over the
atomic electron density was made. They further suggested that the effects of indi-
vidual bonding of the electrons in their atomic orbitals could be incorporated
through the added factor vy = Y2 as

2
1 e > 2mv
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From equation (17), the mean excitation enerqy is given by

3 >
= 8
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Lindhard and Scharff estimated the mean excitation energy for atomic Hg as 768 eV
compared with ~800 eV from experiments. For He, they got 37 eV compared with 35 eV
from quoted experiments. They further approximated molecular hydrogen by taking the
effective charge to be 2 = 1.2 and obtained 16 eV.

Following this initial success of treating atoms as localized electron plasmas,
Lindhard and Winther (ref. 24) extended equation (17) by using the more general
velocity-dependent dielectric function derived by Lindhard (ref. 18), and demon-
strated the ability of the Lindhard theory to predict tight bonding corrections of
similar character to those of Walske (ref. 25) in connection with the Bethe theory.

Chu and Powers (ref, 26) made extensive use of the work of Lindhard and Scharff
(ref. 23) to demonstrate Z2 oscillations in the mean excitation energy. This work
gave rise to corresponding 2 oscillations in stopping power from which periodic
variations are associated with the atomic shell structure (ref. 26). The more
detailed calculations of Rousseau et al. (ref. 27) utilized the velocity-dependent
Lindhard-Winther theory (ref. 24) and Bonderup's simplified form of the Lindhard
theory (ref. 28) and show good agreement with 2-MeV alpha-particle stopping-power
data (ref. 29). Throughout these efforts, the parameter Yy 1is taken as the square
root of 2, as suggested by Lindhard and Scharff (ref. 23).

Chu et al. (ref. 30), using the theory of Lindhard and Winther in which individ-
ual electron corrections to the local collective excitation were treated empirically
by taking Y as an adjustable parameter, evaluated the aggregation effects for con-
densed noble gases and metals. The condensed-gas calculations determined electron
densities according to atomic Hartree-Fock densities, including overlap from the
nearest neighbors in the condensed phase. Metallic wave functions were taken from
the muffin-tin calculations of Moruzzi et al. {(ref. 31)., In most cases, Y was in
the range from 1.2 to 1.3, (See ref. 32.)

As noted by Dehmer et al. (ref. 6) equation (18) may be rewritten as

Z, In I, = [ aw [f &r 8w - Y@ ) p(r)] 1n(hw) (19)




from which can be obtained
3
f(w) = fa'r §(w - Yo ) p(r) (20)

where &8(x) is the delta function. It is seen from equation (20) that, in the local
plasma approximation, the volume of plasma with cutoff frequency Ywp = W approxi-
mates the total oscillator strength of the system at frequency ww. No exact eguiva-
lence is implied between the oscillator frequency distribution given by equation (20)
and the oscillator frequency distribution of a gquantum system. (This is true because
eq. (20) exhibits a continuous spectrum, although quantum systems generally exhibit a
series of poles associated with the discrete quantum levels as well as a continuum at
higher frequencies.) Some insight may be gained by comparing dispersion relations
for atomic systems with those for a related plasma. The dispersion relation for a
classical plasma is given by the dielectric constant e(w) as

(21)

where w is the usual plasma frequency and equation (21) results from the plasma
conductivity (ref. 33). Indeed, the same pole appears in metals as the result of the
conduction electrons from which the characteristic optical properties of metals
derive (refs. 33 and 34). The more general dispersion relation, derived from equa-
tions (8) and (11), is

(=]
2
€ = - —— ————
(0) = 1 - Pf ) ax (22)
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where P denotes the principal value at the singularity. In atomic systems, the
oscillator strengths are broadly separated in frequencies according to shells; the
outer shells appear at the lowest frequencies, and the innermost shell appears at the
highest frequencies. The lack of oscillator strength at frequencies between shells
results in large gaps in the spectrum. Let ® Dbe a frequency in the broad gap
between two successive shells - the first centered at w and the second at w_.
Then the dispersion relation (eq. (22)) becomes ! 2

w2
p,1
2
w

e(w) =~ 1 -

(23)



where
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so that Wp, 1 is the plasma frequency associated with the electrons of the outermost
shell. Although equations (23) and (24) provide motivation for using the local
plasma approximation (eq. (20)), there is plenty of room for a more complete under-
standing as to why the model works as well as it does in practical calculations

(ref. 35).

In previous investigations, we considered the use of the local plasma model to
evaluate molecular bonding effects on the mean excitation energy of molecules of
covalently bonded hydrogen and carbon (ref. 35) as well as ionic crystals and gases
(ref. 36), in which quite sensible corrections to the usual Bragg rule were obtained.
The chemical bond shifts were unambiguously defined in terms of atomic integrals and
molecular parameters. In the usual implementation of the local plasma model
(eq. (18)), Y corrects for a shift in the local plasma frequency caused by individ-
ual electron effects. Lindhard and Scharff (ref. 23) suggest Y = TE; however,

Y = 1,2 vyields atomic mean excitation energies from the local plasma model in better
agreement with the accurate atomic values calculated by Dehmer et al. (ref. 6). The
fact that the larger value (Y = IE) gives better agreement with empirical- data sug-
gests that this larger value corrects (in addition to individual electron shifts) for
the chemical shifts as well. Such chemical shifts were estimated separately for
covalent and ionic bonds in references 35 and 36.

Encouraged by the smallness (<30 percent) of the empirical individual electron
corrections to the collective plasma frequency (refs. 32, 35, and 36), a calculation
(ref. 37) in which individual electron shifts were estimated according to the theory
for plane-wave states in an extended plasma, as calculated by Pines (ref. 22), yields
results that are in good agreement with Dehmer et al. (ref. 6). Consequently, the
local plasma model is placed on a parameter-free basis in which chemical shifts are
determined from atomic molecular parameters alone, and effects of individual electron
motion are evaluated in terms of the Pines correction, the combined effects of which
are on the order of the plasma frequency shift of Yy = fﬁ— suggested by Lindhard and
Scharff.

The Pines correction makes a remarkable improvement in the prediction of the
local plasma model, and further adjustments in the theory, to account for the plasma
frequency shifts resulting from the atomic shell structure, should bring the model
into accurate predictive capability. To further elucidate the relationship between
the local plasma model and the more exact quantum treatment of bonded systems,
related quantities of both theories in the case of one-~ and two-electron systems are
examined in the following section of this report. Atomic mean excitation energies
and straggling parameters, based on the local plasma model, are compared with accu-
rate calculations of Inokuti et al. (refs. 6 to 8) in the section entitled "Stopping
and Straggling Parameters of Atoms.," The use of the Gordon-Kim electron gas model of
molecular bonding (ref. 38) to determine the effects of covalent chemical bond shifts
on mean excitation energy for elements of the first two rows is presented in the
section entitled "Covalent-Bond Effects." Calculations of mean excitation energies
of ionic-bonded substances are discussed in the section entitled "Ionic-Bond




Effects," and the mean excitation energies of metals are discussed in the section
entitled "Metallic-Bond Effects.”
EXCITATION SPECTRA OF ONE- AND TWO-ELECTRON SYSTEMS

The hydrogen atomic excitation spectrum in the dipole approximation is well
known as

(" 8 2n-5 7
E &_(1 - 1_>n7Ln_—.L_ S(w -~ w) (Aw < R)
3 2 2n+5 n
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where n is the principal quantum number, R is Rydberg's constant, wn is given
by

he = R(1 - 1/n%) (26)

and

Rk hw - R (27)

The corresponding spectrum for the local plasma model {eq. (20)) is given as

Aww 2 lnz(w/m ) (0w < w)
(o] [o) (o}
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Where ﬁwo = 55,12 eV, The cumulative oscillator strength

w
Flw) = f flw') dw' (29)
0

is shown in figure 1 for each of the two models. Similarly, the excitation spectrum
of the helium atom has been evaluated for screened wave functions and is shown in
figure 1. The fractional excitations of the two models never differ by more than
=15 percent above the excitation threshold. As noted by Dehmer et al. (ref. 6), the
main error in the local plasma model is the contribution to absorption below excita-
tion threshold all the way down to zero. This error is also evident in the energy



moments of the plasma model. The moments of the energy spectrum for the hydrogen
atom are shown in figure 2, where

hw
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CER)™S = (R—) f(w) dw (30)
0

and m 1s a continuous parameter, The low-frequency contributions associated with
the local plasma model cause a divergence in equation (30) at m = -2 which is not
present in the quantum system. Atomic polarizability and the low-frequency refrac-
tive index are affected the most. Other atomic properties, such as the total inelas-
tic cross section, the mean excitation energy, the straggling parameter, and the mean
electronic kinetic energy, are reasonably represented by the plasma model. Also
shown in figure 2 are results, including the Pines correction (ref. 22) to the plasma
frequency, which indicate substantial improvement in the prediction of atomic proper-
ties, althouqh low-energy atomic properties are still beyond the scope of the model.

The plasma model is expected to be more accurate as more electrons are added to
the system. This occurs in two ways, as seen in figure 1., First, a greater contri-
bution comes from the continuum, which is most like the plasma. Second, the excita-
tion thresholds shift to relatively lower energies and fill in the low-frequency
region, for which the plasma model normally tends to error. A considerable improve-
ment in the energy moments of helium for the local plasma approximation are clearly
shown in figqure 3,

The moments of the excitation spectrum of H2 have been evaluated empirically
by using experimental oscillator strengths {(ref. 39) and theoretically (ref. 14)
using the Dalgarno sum rules of reference 12 (egs. (4) to (6)). These are compared
in figqure 4 with an "atomic" approximation to H taken as a generalization of
Bragg's rule (ref. 11)., Also shown in fiqure 4 are values for H calculated using
the local plasma model with the Pines correction and with the Gorgon—Kim model of the
molecular wave functions (ref. 38) given as

> > > >
Py (r) = pH(r) + pH(r - R) (31)

2

where pH(;) is the atomic hydrogen electron density and E is the displacement
vector of length 1.4ao between the two centers. It is clear from figure 4 that,
even with the simple Gordon-Kim approximation, the plasma model is a considerable
improvement over the Bragg rule, except for the lowest-energy molecular properties
(i.es, m < =-0,5). Figqure 4 also shows that the Gordon-Kim approximation introduces
minor errors compared with the inherent limitations of the local plasma model.

The mean excitation energy for stopping power may likewise be evaluated. Atomic
and molecular hydrogen are compared in table I with a recent compilation of experi-
mental data (ref. 40). Quite reasonable estimates of atomic and molecular properties
of importance to ionizing radiation are obtained by this local plasma model if the
Pines correction is included. Optical and other low-frequency properties, however,
are poorly represented. The plasma model should become more accurate for more com-
plex many-electron systems, especially those in which the optical properties are more
in line with those predicted by the plasma model.

With the present results, it is now clear what approach should be taken to
improve the plasma model applications. Clearly, a correction factor similar to that
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of Pines should be introduced to suppress absorption below excitation threshold and,
correspondingly, to enhance frequencies just above threshold. A number of possibili-
ties are open to implement such a correction, which would appear as a first-order
quantum correction for the discrete spectrum. Preliminary work by Walecka (ref. 41)
on the study of collective atomic oscillations may be a starting point for further
development.

STOPPING AND STRAGGLING PARAMETERS OF ATOMS

In this section, parameters are considered for atoms associated with the stop-
ping of charged particles and fluctuations in their enerqgy transfer. The energy
moment is

S{m) = <(E/R)™> (32)

and the related quantity is

L(m) = 35(m) (33)
dm

In terms of these quantities, the mean excitation energy is

In I = L(0)/S(0) (34)

and the straggling parameter related to fluctuations in energy loss is

In A = L(1)/5(1) (35)

The mean excitation energy (eq. (34)) has been evaluated in the context of the local
plasma model and is compared in figure 5 with the values computed by Inokuti and
co-workers (refs. 6 to 8) for atoms through krypton. Hartree-Fock wave functions
(ref. 42) have been used through neon and sodium through krypton are represented by
screened wave functions (ref. 43).

The values for the straggling parameter were similarly evaluated and are com-
pared in figure 6 with the values obtained by Inokuti and co-workers. Also shown are
values for noble gases compiled by Inokuti et al. (refs. 6 to 8) and values obtained
by Zeiss et al. (ref. 11)., The present values tend to be about 25 percent low at
Z = 36, with improvements at lower values of Z, which may be caused by the lack of
shell structure corrections in the plasma frequencies of the K and L shells.,

It is clear from these atomic calculations that the plasma model with the Pines
correction generally provides good results for mean excitation energy and reasonable
estimates for the straggling parameter. Although Hartree-Fock wave functions are
required for low atomic numbers, reasonable results are obtained using screened wave
functions for atoms heavier than argon. It is mainly the low-energy atomic
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properties which require improvements beyond the Pines correction. These properties
emphasize the need for a first-order quantum correction to the atomic structure.

COVALENT-BOND EFFECTS

Early experimental work with ionization energy loss was conducted in covalent-
bonded gases (also noble gases), from which Bragg's rule was derived. Although more
recent experimental work, beginning with Thompson (ref. 44), has shown systematic
variation from Bragg's rule, such rules still seem appropriate for fixed molecular
structures (refs. 45 and 46). As the result of the theoretical efforts of Inckuti
and co-workers (refs. 6 to 8), it is clear that chemical-bond shifts in the mean

excitation enerqgy have occurred, and, as suggested by Platzman (ref. 5), all covalent
shifts are of similar magnitude.

In any molecular dynamic calculation, there is a trade-off between model accu-
racy and computational efficiency. As pertains to the radiolysis of large molecular
structures, the most useful model is the lowest order possible. It is clear that the
use of self-consistent field methods to determine molecular wave functions would
seriously limit the ability to study systems of practical interest. Considering the
relative success of the Gordon-Kim electron gas model of molecular bonding (refs. 38,
47, and 48), a simple method for the calculation of chemical-bond effects on the mean
excitation energies is suggested. As suggested by Gordon and Kim, the molecular
electron density as a superposition of the unperturbed atomic states is given by

> > > > (36)
p(r) = p1(r) + p2(r - R12)

for diatomic molecules. There is an obvious generalization of equation (36) for the
polyatomic case. Whereas Gordon and Kim used equation (36) to calculate the molecu-
lar potential (see refs. 47 and 48 for ionic and covalent applications) from which

R 2 is theoretically obtained, R is taken here from observed experimental bond
distances. Substituting equation l§6) into equations (14) and (18) and reducing
results in

> > > > .1/2 .3
Z 1ln(1) = Z1 1n(I1) + f p1(r) In[1 + pz(r - R12)/p1(r)] / dr

> > > »> 1/2 3
+ 2, 1n(I2) + f p2(r) In(1 + p1(r - R21)/p2(r)] / dr (37)

where I, and I, are the corresponding atomic values, which are accurately known
(refs. 6 to 8). The chemical bonding correction is generally

_1 > > > > 172 3
In(1 +8;,) "z, [ o x) 1nl1 + Py (r = Ry /Py (£)1 77 d'x (38)

Generalizing equation (37) yields

Z2 1n(1) = )z 1n{{1 + ) & \I. (39)
P! y i3
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where the sum over j includes every bond in which Z is attached in the molecule.
Correction factors have been calculated (ref. 35) for hydrogen and carbon molecules
with the bond parameters in table ITI. Carbon sp3 hybrid orbital wave functions were
used in these calculations, although s“p“ values were only slightly different., The
tetrahedral orbitals were spherically symmetrical in their electron densities.
Therefore, spherical symmetry was assumed throughout subsequent calculations.

Recommended values of mean excitation energies (ref. 40) are compared in
table IIT with theoretical values calculated using atomic mean excitation energies
from Dehmer et al. (ref. 6) with the bond corrections in table II. Bragg's rule is
also used with the atomic values of Dehmer et al, for comparison. Although the theo-
retical values are within 4 percent of the experimental and empirical values, the
Bragg's rule values are from 17 to 21 percent low, indicating a substantial adjust-
ment as the result of chemical bonding.

Mean excitation energies have been calculated for covalent gases of the first
two rows using the local plasma model and the Pines correction. Results are compared
with empirical values (ref., 40) in table IV. Corresponding values for covalent sol-
ids are shown in table V.

Moments for the N2 molecule using the plasma model are compared in fiqure 7 with
values calculated from the oscillator strengths compiled by Dalgarno et al.
(ref. 49). As can be seen, good agreement between the present simple plasma model
calculations and the oscillator strength distribution of reference 49 is obtained
except for the lowest-frequency phenomena.

IONIC-BOND EFFECTS

Although covalent bond shifts were found to be relatively small corrections to
atomic values, such a separation as in equation (37) in terms of neutral atomic val-~
ues are not possible for ionic bonds. Using the Gordon-Kim model electron density of
the partial ionic (diatomic) system,
>

(r -~ R.) (40)

>
Pplr) =o (-p) AB

(;) +
P a(+P) pB

where A(+p) and B(—p) refer to partially ionic states of the two constituents,
ﬁAB is their nuclear separation, and p is the partial ionic fraction. The elec-
tron density of a partial ionic atom in equation (40) is

> : > >
= - + r (41)
pA(tp)(r) (1 -p) p,(x) +p oAt( )
>
where pA(r) is the electron density of the neutral atom and p (;) is the elec-~

A
tron density of the atomic ion. With the aid of equations (40) and (41), shifts in
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the mean excitation energy caused by ionic and covalent effects can be evaluated. BAs
shown in reference 36,

> > > > 1/2 3
Z 1n{(I) = 2 In|I + p (r) In{1 + p {(r - R_)/p (r) d”r
5 (+P) [A(+p)] / A (+P) [ g(-P) AB/ A(+P) ]
> *> > >11/2 .3
+ 2 In{T ,_ + p o, (xr) Inft +p (r - R _)/p (r)] 7 a’r (42)
B(—p) [B( p)] f B( p) [ A(+p) AB/ B(—p) ]

with

> > 3
Z ln|I = p (r) 1ln|vyhw (r)} d'r (43)
A(+p) [A(+p)] f A(+p) [ A(+p) ]

where Yy is the Pines correction given by equation (15) or estimated empirically as
in reference 46. Mean excitation energies for various stages of ionization calcu-~
lated using the Pines correction and the atomic wave functions of Clementi and Roetti
(ref. 42) are shown in figure 8. 1In addition to the the ionic-bond shifts, there are
shifts caused by covalent-like character, as given by

1 > > »> >71/2 .3
in|t + & = — P (r) In{1 + p (r - R)/p (r) a’r (44)
[ A(+p)'B(—p)] ZA‘*"’ / A(+P) [ p{~P) / A(+P) ]

Mean excitation energies for partial ionic-bonded substances are shown in table VI
with the corresponding bond parameters used in the model. Also shown are values for
a pure covalent bond and Bragg values using the neutral atomic mean excitation ener-
gies of Dehmer et al. (ref. 6) as well as Bragg values of the corresponding partial
ionic states. The ionic-bond fractions are taken from Pauling (ref. 50) as experi-
mental data for HF and LiH. Bond lengths are for ionic crystals except for the HF
gas. Atomic mean excitation energies are shown for partial ionic states in figure 8,
and differ from values in reference 36 because of the Pines correction.

It is clear from table VI that the main contribution to corrections to the Bragg
rule is the adjustment from atomic neutral to atomic ion mean excitation energies as
proposed by Platzman (ref. 5). Indeed, when there is little difference between the
usual Bragg value and the partially ionic Bragg value, the covalent value is in near
agreement with the predicted value of I for HF and LiH in the table. For LiF, the
relatively large adjustment from the usual Bragg value (81.6) to the partially ionic
Bragg value (92.6) leaves a large difference between the covalent value (83.4) and
the predicted value of I (93.6). The adjustment of the ionic-bond shift caused by
the covalent-like character for LiF is 1 eV compared with adjustments of the neutral
states caused by the pure covalent bond of 1.8 eV. This comparison shows the greater
role of the Coulomb attraction in forming the bond of the ionic molecules relative to
the two-electron interaction in forming the covalent bond.

Calculated mean excitation energies for ionic crystals using the Pines correc-
tion are shown in table VII, along with recommended values (ref. 40). The crystal
parameter and fractional ionic charge have been taken from Pauling (ref. 50). The
LiF value is the only one with an experimental basis (ref. 36).
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METALLIC-BOND EFFECTS

The first approach to metals in this paper is similar to that taken by Chu et
al. (ref. 30), in which they employed the muffin-tin wave functions (ref. 31) and
stopping-power theory according to Lindhard and Winther (ref. 24). Individual elec-
tron corrections to the local plasma frequency are treated empirically through an
adjustable parameter Y. (See table I of (ref. 32) and related discussion.) Unlike
this previous work, the present work includes estimates of shifts in the plasma fre-

quency according to the Pines correction in equation (15) and is in that sense com-
pletely deterministic,.

The metallic wave functions for lithium metal approximated by the Wigner-Seitz
model (ref. 51) are considered first. In deriving these wave functions, the lithium
ion core potential was taken from the screened wave functions of Clementi and
Raimondi (ref. 43), and the calculated crystal-valence wave functions (aside from
normalization) were found to be a slight perturbation (mainly due to boundary condi-
tions) of the free hydrogenic (2s) orbital inside the Wigner-Seitz sphere. The final
crystal wave functions used were constructed from unperturbed Hartree-Fock orbitals
(ref. 42) in the core region with a small perturbation outside the core. This per-
turbation matched the boundary conditions on the surface of the Wigner-Seitz sphere
(ref. 51). This was followed by normalization of the valence-shell wave functions
(to make the valence electron density add up to give the correct number of valence
electrons). These wave functions are quite similar to the muffin-tin model (ref. 31)
and yield mean excitation energies in substantial agreement with Ziegler (ref. 32)
when vy 1is taken as his empirical value. The mean excitation energies for metals of
the second and third row using Wigner-Seitz wave functions (treating all valence
electrons as spatially equivalent) and the Pines correction are compared in table
VIII with empirical values (ref. 40).

The present results clearly demonstrate that the effects of the metallic bond in
lithium and beryllium are large and are mainly the result of collective oscillations
in the free-electron gas formed by the valence electrons. Blthough similar good
agreement should be expected for sodium and magnesium, it is emphasized here only
that these empirical values are interpolations without an experimental basis, and
smaller empirical values more in line with the present results should not be elimi-
nated. The small value predicted for aluminum (149 eV) is in doubt, as the empirical
value (166 + 4 eV) is based on one of the most experimentally studied guantities
since aluminum served as a standard in stopping-power experiments for many years.

The fault could well lie in the use of the Wigner-Seitz model for group IIT metals.
It is well-known that the success of the Wigner-Seitz theory rests mainly on applica-
tion to alkali metals. Although some hope for application to group II metals exists,
treating the three valence electrons of group III as spatially equivalent is clearly
in error. Correction to metals from an alternate model, proposed by Pauling

(ref. 50) for metallic orbitals and implemented here in simplified fashion, are
considered next.

In X-ray diffraction experiments, even beryllium metal shows a considerable
degree of covalent guality, as suspected from bulk material properties (ref. 52). In
this view, a model is considered in which the valence-bond effects can be included
explicitly. 1In the spirit of the Pauling valence-bond theory (ref. 50) and the
Gordon-Kim model (ref. 38) of valence bonding, the electron density about the ion
cores is assumed to be a superposition of partial ionic core states among nearest
core neighbors., Additional contributions from next-nearest neighbors are assumed to
add to the electron continuum states in a manner analogous to the Pauling
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unsynchronized resonances in lithium crystals (ref. 50). The electron density of the
partially ionic core charge p \is

> (v -pP > P >
pA(+p)(r) = (——;——)pA(r) + v pA(+V)(r) (45)

where v 1s the number of valence+electrons, pA(?) is the electron density of the
atomic neutral state, and pA(+v)(r) is the electron density of the valence-stripped

ion cores. We have used the observation by Slater that radial wave functions of the
L shell are nearly the same for both values of & as a result of exchange interac-
tion between the (2s) and (1s) orbitals. The same is true for the M shell. 1In the
present calculation, each metal ion core has been placed into a Wigner-Seitz cell and
the electron density from nearest neighbors has been approximated by reflecting the
exterior core density function across the cell boundary. The continuum electron
density is then taken as

3
p, = p + (v - p)61(3/4ﬂ:rs ) (46)

where & 1is the next-nearest-neighbor contribution to the continuum. The value of
d 1is determined by requiring a full complement of v valence electrons per cell.
The resultant electron density p(r) was used to calculate the local plasma fre-
quency and mean excitation enerqgy per cell. The Pines correction was used for indi-
vidual particle shifts. The radii r, for the Wigner-Seitz cell are given in

table VIII. Te ion-core wave functions were calculated from the Hartree~Fock wave
functions of Clementi and Roetti (ref. 42). A slight dependence on the ion-core
charge appears {(ref. 53) in which there is some increase in mean excitation to

I = 155 eV for aluminum. However, there are some unresolved questions, concerning
periodicity at the cell boundaries, which leave the value of this model in doubt.

The mean excitation energy for aluminum requires the reconsideration of the data
on which it is based and the corresponding analysis. In an analysis by Andersen and
Ziegler (ref. 54), 162 eV was assumed as the mean excitation energy for aluminum. A
reduction in I to 150 eV results in a 3-percent increase in stopping power at
1 MeV, which leaves it within the stated uncertainty limits of the Andersen and
Ziegler parametric curves (ref. 54). ‘These curves correspond to the uncertainty in
the experimental data used in the analysis of reference 54. (See fig. 9.) Indeed, a
number of authors have reported mean excitation energies for aluminum in line with
the present results (refs. 55 to 60), although more recent analyses are higher. A
recent study of aluminum optical properties indicates that a value of I several eV
lower than 166 eV is not inconsistent with the empirical dielectric function
(ref. 61). The shift of several eV is associated with polarization of the AK3+ core
by the valence electrons in their metallic orbitals. Such core polarization effects
are not calculated in the present model. Furthermore, quantum corrections to K- and
L-shell discrete spectrum may cause further small adjustments. In any case, the
apparent discrepancy is due to the electronic wave functions used in the present
calculation, to the inadequate treatment of corrections to the Bethe formula, from
which I 1is extracted from the experimental data (see for example refs. 62 and 63),
to quantum corrections, or to a combination of these.

To further clarify the relationship between the mean excitation energy for alu-
minum and experimental data, a band is shown in figure 9 which brackets the experi-
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mental data in references 62 and 64 to 68 for proton energies between 0.5 and

10 MeV. These energies are compared with the reduced stopping power calculated from
the- Andersen and Ziegler empirical shell corrections {(ref. 54). The older data of
Kahn (ref. 64), which would have lowered the band considerably, were excluded from
the fiqure. The mean excitation energies exhibited in the figure are the 167 eV used
as input to Shiles et al. (ref. 61), the 162 eV determined by Andersen and Ziegler
{ref. 54), the 155 eV estimated using one form of valence-bond theory, and the 149 eV
calculated according to the present (simplified) Wigner-Seitz model. While it is not
clear that the 167-eV curve is superior to the 149-eV curve, a modest shift in the
empirical shell corrections can bring any of the four curves into an equally good fit
to the data. It is further emphasized that shell corrections are not exactly known
nor in empirical analysis are shell corrections usually differentiated from other
corrections to the Bethe formula (eq. (1)).

DISCUSSION

The present results are combined in figqure 10 with the evaluated data of Seltzer
and Berger (ref. 40). Care is taken where possible to model the same physical-
chemical state. (See specific tables for details.) Results for free atoms (Hartree-
Fock wave functions for 2 < 10, and screened wave functions elsewhere) are also com-
pared in fiqure 10 with the accurate atomic values of Dehmer et al. (ref. 6). It is
clear that the trends in the first- and second-period elements are well approximated
by the present application of the local plasma model, especially when the Pines cor-
rection is applied. The present results are generally in fair agreement with the
compilation and recommendations of Seltzer and Bexrger (ref. 40), although small dis-
crepancies in the third period remain to be resolved.

Perhaps the greatest criticism of the present application of the local plasma
model calculations is the use of the Gordon-Kim approximation to the covalent-bonded
wave functions. When the moments of the energy spectrum are considered, it is clear
that the Gordon-Kim model approximately adjusts the excitation spectrum in the region
of greatest importance to ionizing radiation, and appears no more in error than the
basic plasma model in which it is used. (See fig. 4.) Of course, accurate use of
the plasma model implies the necessary use of the Pines correction, as demonstrated
for the hydrogen atom in figure 2 and used throughout the present calculations.
Although the Pines correction produces marked improvements in the predictive capabil-
ity of the model, further quantum corrections for the discrete spectrum would produce
additional corrections and would hopefully remove most of the remaining error in the
plasma model. Further improvement in electronic wave functions would be helpful in
identifying the remaining corrections required for the plasma model.
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SYMBOLS

Bohr's radius

o

c shell correction

c velocity of light in vacuum

ﬁ(t) electric displacement vector

E system excitation energy

E(t) electric field vector

E, eigenvalue of nth state

Elr,corr long-range correlation energy

e magnitude of electron charge

Flw) accumulated oscillator strength with angular frequency below w

FD(w) Dalgarno sum

f(u)),fn optical oscillator strength

fH(w) optical oscillator strength of hydrogen atom

fp(w) plasma oscillator strength of hydrogen atom

g(t) polarization response

H Hamiltonian operator

h Planck's constant

h h/2w

I mean excitation energy

Iat atomic mean excitation energy

IB molecular mean excitation energy for Bragg's rule with neutral atoms

I. mean excitation energy of covalent bonded molecule

Iis molecular mean excitation energy for Bragg's rule with partially ionic
atoms

Ij mean excitation energy of system J

k wave number of ejected electron

LPM local plasma model
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L(m) mth moment of log mean excitation enerqgy

2 individual electron orbital anqular momentum quantum number
m electron mass
n density of atoms
nj stochiometric coefficient
R Rydberg's constant
RAB internuclear distance in molecule composed of atoms A and B
> >
r,r, electron position vector
g radius of Wigner-Seitz sphere
S stopping power
S(m) mth moment of oscillator strengths
t time
v ion velocity
Z1 ion charge number
ZZ’Zj atomic number
B ratio of ion velocity to velocity of light
Y plasma frequency shift
A straggling parameter
5 polarization correction
6ij chemical bond shift in mean excitation energy
e(w) dielectric function
KS average electron separation
>
p,pi(r) electron density
pH(r) electron density in hydrogen atom
sz(;) electron density in hydrogen molecule
X screening parameter
¢o ground state electronic wave function
w, w angular frequency of oscillator




w classical plasma frequency
< > averaged value

An arrow over a symbol denotes a vector.
variable of integration.
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TABLE III.- MOLECULAR MEAN EXCITATION ENERGY
Molecular mean excitation enerqgy, ev, for -
Chemical
species Present Experimental Bragg's
theory empirical rule
CH, 44.7 42.8 35.1
(CH2)x 55,0 53.4 43.5
CeHg 60.6 61.4 + 1.9 50.6
H, 18.9 18.5 + 0.5 15.0
Graphite 76.1 78.5 + 1.5 62.0

TABLE IV.- MOLECULAR MEAN EXCITATION ENERGIES FOR COVALENT GASES

Chemical , a I, eV I, ev
species AB o
(a) (b)
H, 1.40 18.9 19.2 ¢+ 0.4€
N, 2.08 85.0 82.0 + 1.6°
0, 2.34 99.6 95 + 1.9
F, 2.67 114.2 115 + 10
cL, 3.76 170.8 171 + 14

8L0cal plasma model.

bReference 40,

CThese values are strongly

28
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TABLE V.- MEAN EXCITATION ENERGIES FOR COVALENT-BONDED CRYSTALS

Chemical R, a I, eV I, eV
species AB o
(a) (b)
B (tetragonal) 3.06 67.3 76 + 7.6
C (diamond) 2.94 75.3
C (graphite) 2.68 76.1 78 + 2.3
Si (diamond) 4.42 151.0 173 £ 4
P (black) 4.16 155.7 181  14°
S {(rhombic) 3.85 162.7 190 t 15€
310cal plasma model.
Reference 40.
CUnspecified allotropic form.
TABLE VI.- IONIC-BOND PARAMETERS
S;Z‘gizzl Rppr p I, ev I;ps ev Ig, ev I, ev
HF 1.72 0.50 97.6 91.7 91.0 96.4
LiH 3.85 .25 27.8 25,2 25.9 26.7
LiF 3.85 .90 83.4 92.6 81.6 93.6
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TABLE VII.- MEAN EXCITATION ENERGIES OF IONIC CRYSTALS

el o | e
(a)
LiF 3.80 0.90 92.8 94 t 8
LiCX 4.86 .73 139.1 144 + 12
NaF 4.37 .91¢ 131.5 147 + 12
NaC2X 5.31 .75 159.1 181 t 14

q1ocal plasma model.

Reference 40.
Cpauling partial ionic character function.

TABLE VIII.- METALLIC PARAMETERS FOR SELECTED METALS OF FIRST TWO ROWS

S;iiizzl Iy eV rer  ag I, eV I, ev
(a) (b) (c)
Lithium 34.0 3.260 45 41,5 + 3.7
Beryllium 38.6 2.375 60 63.7 + 3.2
Sodium 123.6 3.99 140 162 + 8
Magnesium 121.2 3.34 144 164 + 8
Aluminum 124.3 2.991 149 166 + 3

areference 6.
bwigner—Seitz model.
CReference 40.
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Figure 1.~ Cumulative oscillator strength distribution
for atomic hydrogen and helium.
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Figure 2.- Moments of oscillator strengths of hydrogen atom.
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Figure 4.~ Moments of oscillator strengths of hydrogen
molecule for several models.
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using Gordon-Kim molecular model densities.

(o} Reference 6

—— Local plasma model

200

ODehmer et al.

150

eV 100

50t
Li
H
0 1 1 1
-1 1) 1

lonic charge

Figure 8.- Mean excitation energies for
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Reduced stopping power

E, MeV

Figure 9.- Comparisons of reduced stopping power for
aluminum for several mean excitation energies with
range of experimental data. (See refs. 60 and 62
to 66.) Shaded area is band of experimental data.
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Figure 10.- Mean excitation energies for atoms, molecules,
solids, and metals. Specific data taken from tables III
to V and table VIII.
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